The Surveyor mission had been conceived in 1959 as a scheme to soft-land scientific instruments an the Moon's surface. It was a highly ambitious plan that required both development of a radical new launch vehicle and the new technology of a closed-loop, radar-controlled automated landing. The cutaway drawing shows the Atlas-Centaur launch vehicle. The Atlas-Centaur, a major step forward in rocket propulsion, was the first launch vehicle to use the high-energy propellant combination of hydrogen and oxygen. Its new Centaur upper stage, built by General Dynamics, had two Pratt & Whitney RL-10 engines of 15,000-lb thrust each. The first stage was a modified Atlas D having enlarged tanks and increased thrust. |
The main events in a successful Surveyor landing sequence. |
The spidery Surveyor consisted of a tubular framework perched an three shock-absorbing footpads. Despite ist queer appearance, it incorporated some of the most sophisticated automatic systems man had ever hurled into space (see specifications below). The first one launched made a perfect soft landing an the Moon, radioing back to Earth a rich trove of imagery and data. Seven were launched in all; one tumbled during course correction, one went mysteriously mute during landing, and the remaining five were unqualified successes. |
WEIGHT
Weight at launch 2193 lb Landed weight 625 lb |
POWER
Solar panel: 90 watts Batteries: 230 ampere-hours |
COMMUNICATIONS
Dual transmitters: 10 watts each |
GUIDANCE AND CONTROL
Inertial reference: 3-axis gyros Celestial reference: Sun and Canopus sensors Attitude control: cold gas jets Terminal landing: automated closed loop, with radar altimeter and doppler velocity sensor |
PROPULSION
Main retrorocket: 9000-lb solid fuel Vernier retrorockets: throttable between 30- and 102-lb thrust each |
TV CAMERA
Focal length: 25 or 100 mm Aperture: f/4 to f/22 Resolution: 1 mm at 4 m |
Typical Surveyor Specifications |
Its insectlike shadow was photographed by Surveyor I on the desolate surface of Oceanus Procellarum. During the long lunar day it shot 10,386 pictures, including the 52 in this mosaic. The noon temperature of 235° F dropped to 250° below zero an hour after the Sun went down. |
The first lunar soft landing was accomplished by Russia's Luna 9 on February 3, 1966, about 60 miles northeast of the crater Calaverius. Its pictures showed details down to a tenth of an inch five feet away. They indicated no loose dust layer, both rounded and angular rock fragments, numerous small craters, some with slope angles exceeding 40 degrees, and generally granular surface material. These results increased confidence that the Moon was not dangerously soft for a manned landing. |
Surveyor I televised excellent pictures of the depth of the depression in the lunar soil made by its footpad when it soft-landed on June 2, 1966, four months after Luna 9. Calculations from these and similar images set at rest anxieties about the load-bearing adequacy of the Moon. Some scientists had theorized that astronauts could be engulfed in dangerously deep dust layers, but Surveyor's footpad pictures, as well as the digging done by the motorized scoop on board, indicated that the Moon would readily support the LM and its astronauts. |
Like a tiny back hoe, the surface sampler fitted to some Surveyors could dig trenches in the lunar soil. Above, the smooth vertical wall left by the scoop indicated the cohesiveness of the fine lunar material. Variations in the amount of current drawn by the sampler motor gave indication of the digging effort needed. At left above, the sampler is shown coming to the rescue when the head of the alpha-scattering instrument failed to deploy on command. After two gentle downward nudges from the scoop, the instrument dropped to the surface. |
"A dinosaur's skull" was the joking name that Surveyor I controllers used for this rock. Geologists on the team were more solemn: "A rock about 13 feet away, 12 by 18 inches, subangular in shape with many facets slightly rounded. Lighter parts of the rock have charper features, suggesting greater resistance to erosion." |
Surveyor VI hopped under its own power to a second site about eight feet from its landing spot. This maneuver made it possible to study the effect of firing rocket engines that impinged an the lunar surface. Picture at left below shows a photometric chart attached to an omni-antenna, which was clean after first landing. Afterward, the chart was coated with an adhering layer of fine soil blasted out of the lunar surface. |