Try Young Living Essential Oils With This Special Offer?

Home Inhaltsverzeichnis Neuigkeiten Bilderindex Copyright Puzzles

Martian Dunes


 

Pictures of Martian Dunes

This set of images was chosen to show some of the best examples of volcanic landforms on Mars.

Dune Activity in Proctor Crater
Observation of dune activity--whether the movement of whole dunes or the movement of sediment on a dune--is the result of a direct link between the martian surface and its atmosphere. Observation of dune activity can be used to determine the rate at which wind moves sediment. It can also help to estimate how long it takes for windblown sand to abrade surfaces--including rocks and Mars landers.

One of the first sand dune fields ever recognized on Mars is shown here. Located on the floor of Proctor Crater (at 48S, 330W), this dune field was seen in Mariner 9 images more than 27 years ago. The new MOC image shows evidence that the Proctor Crater dunes are active today. In this image, the sand dunes are dark and patches of southern winter frost are bright. The sun illuminates the scene from the upper left. Dark streaks can be seen on frost-covered slopes, particularly just left of the center of the picture. These streaks result from recent avalanching of sand on the steep (up to 35), down-wind side of the dune, otherwise known as the slip face. Because the dark sand streaks are superposed upon the bright frost, these streaks can only be as old as the frost. This frost cannot be more than 11 months old, and was probably only a few months old at the time the picture was taken. Thus, the dunes must be active today in order to show such streaks.

The placement of dunes in the MOC image was also compared with their positions in the earlier Mariner 9 image (above, left). No evidence that entire dunes have moved since March 1972 has been found. While the period of March 1972 to June 1999 is 27 Earth years, it is only about 14 Mars years. Looking for evidence of dune movement since 1972 is limited by the fact that the Mariner 9 images have spatial resolutions of about 62 meters (203 feet) per pixel---this means that the dunes would have to move more than about 62 meters before their motion could be clearly detected in a MOC image.

Taking the two results together--evidence for recent dune activity in the form of avalanches on slip faces versus lack of movement at the scale of 62 meters--helps to establish that (a) the dunes are active, but (b) they moved less than approximately 62 meters in 14 Mars years.

The 8 kilometer scale (upper left) indicates a distance of 5.0 miles. The 300 meter scale bar (lower right) represents 328 yards (984 feet). The Mariner 9 images are illuminated from the upper right, the MOC image from the upper left. (Credit Malin Space Science Systems/NASA)

 

HOME Mars

 

Copyright © 1997-2000 by Calvin J. Hamilton. All rights reserved. Privacy Statement.